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Abstract
The binding energies of the ground and some low-lying excited states of a D−
centre in a GaAs/GaAlAs quantum well have been calculated as a function
of the presence of an applied magnetic field and well width respectively. In
comparison with exact two-dimensional results, which show only four bound
states, a larger number of D− bound states appear in a quantum well. Moreover,
the critical magnetic field values at which the excited states change from
unbound to bound are obtained, and the reasons of the binding energy as
function of magnetic field and well width are discussed. Our results are in good
agreement with those in the literature.

1. Introduction

There has been an increasing interest in the investigation of two-dimensional and quasi-two-
dimensional systems such as quantum wells and superlattices since three-dimensional examples
of the D− centre were first discovered in material semiconductors [1–3]. The D− centre was
found in multi-layer quantum wells by Huant et al [4], and identified by Muller et al [5],
Subsequently, the ground state energies of the 2D D− centre were calculated by Phelps and
Bajaj et al [6]. From this point on, the study of D− centres, both experimental and theoretical,
expanded extensively.

A negative-donor centre (D−) in a semiconductor is formed by a neutral centre (D0)
trapping an extra electron. Their properties depend delicately on a balance between the
electron–electron interaction and the interaction of the two electrons with the charge to which
they are bound. So there are some new phenomena in the D− state compared with the D0 centre.
With an applied magnetic field, the D− centre has strong effects on the optical and transition
properties of semiconductor devices. Many novel effects, such as the quantum Hall effect in
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quantum wells, Mott phase transitions [7, 8] and electron localizations, are intimately related
to the D0 centre and the D− centre. In addition, a D− centre is the simplest three-body system,
thus the exact solution of the D− centre problem would help us understand the e–e correlation
effects in low-dimensional systems.

D− centres in 2D and 3D have already been studied [1–4, 9–14, 24] in an applied magnetic
field. Experimentally, cyclotron resonance and magneto-optical conduction etc [15, 16] have
been used to measure the D− centre energy levels in GaAs quantum wells. We think the bound
state number of the D− centre should be a function of the thickness of the well, for the following
reasons: there are only four bound states existing in a 2D system no matter how strong the
magnetic field is, but infinitely many bound states in 3D materials. The QW is a structure
situated between two and three dimensions. On the other hand, both theory and experiment have
also indicated that the ground and excited state energies are strongly affected by the magnetic
fields, so in the presence of an external magnetic field the number of the D− centre’s bound
states is determined by both the spatial dimension and the intensity of the magnetic field.

The variational approach [14, 17, 18] is usually used for calculating D− centre properties
in quantum wells, but the results depend closely on the trial wavefunction. In this paper, we
obtained the results by numerically calculating the secular equation. The basic function we
have used is the product of the Landau level wavefunction and the free electron wavefunction
in the well. Using this wavefunction, we have calculated the binding energies of the ground
and several low-lying excited states of a D− centre in a quantum well. We have performed
calculations of the critical magnetic field values at which the D− states converted from unbound
to bound in wells of various thickness size, and the distribution of the D− states as a function
of the well width and the critical magnetic field has also been obtained.

2. Theoretical framework

The Hamiltonian of D− centres in a QW and magnetic field, �B = ∇ × �A, perpendicular to the
well structures is

H = He1 + He2 − v(�r )+ vw, (1)

where v(�r ) = v1 + v2 − v12 is the Coulomb potential of the two electrons, and vw is the barrier
of the quantum well. Using atomic units (energies in units of Ry = e2

2εa∗
B

, lengths in unit of

a∗
B = εh̄2

m∗
e e2 ) the Hamiltonian of the single electron is

He = −∇2 + 1
4γ

2ρ2 + γ Lz, (2)

γ = h̄ωc
2Ry

is the dimensionless magnetic-field intensity.

The wavefunction of the D− centre is expressed as

ψ± =
∑

{lnm}

1√
2
α{lnm}{|l1n1m1〉1|l2n2m2〉2 ± |l2n2m2〉1|l1n1m1〉2} (3)

and we use the following basic function, in which the Coulomb potential could be
diagonalized:

|lnm〉 = χl(z)φnm(ρ)e
i(n−m)ϕ, l = 1, 2, 3, . . . , m = 0, 1, 2, . . . , n = 0, 1, 2, . . . .

(4)

In equation (3), ‘±’ represents symmetric and antisymmetric states respectively; the
symbol {lnm} represents all possible sets of the quantum numbers {l1n1m1} and {l2n2m2},
and |l1n1m1〉1|l2n2m2〉2 is the product of the wavefunctions of electron one and electron two.
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The total angular momentum M = (n1 − m1)+ (n2 − m2) is conserved. In equation (4), χl(z)
is the wavefunction of a free electron in the well,

χl(z) =






A cos(−kd/2)eαd/2eαz (−∞,−d/2)

A cos(kz) (−d/2, d/2)
A cos(kd/2)eαd/2e−αz (d/2,+∞)

(5)

χl(z) can also be odd parity when l is a even number. The constants k and α are the wavevector
in the well and the decay factor in the barrier respectively, and depend on the well width d and
quantum number l. They are determined by solving the Schrödinger equation numerically. A
is the normalization constant, and is given by

A =
{

d

2
+ 1

2k
sin(kd)+ 1

α
cos2(kd/2)

}−1/2

.

In equation (4), φnm(ρ)ei(n−m)ϕ is an in-plane Landau level wavefunction. Its radial part

φnm(ρ) = (−1)i<
e−ρ2/4l2

c

√
2πl2

c

√
i<!
i>!

(
ρ√
2l2

c

)i>−i<

Li>−i<
i<

(
ρ2

2l2
c

)
. (6)

Here the electron total angular momentum M = n −m = 0,±1,±2 . . ., and lc = (
h̄c
eB

)1/2
.

The function L is a Laguerre polynomial, and the notation i> and i< represents the greater or
lesser of n and m respectively. It can be shown that with this definition φnm(ρ)ei(n−m)ϕ is
normalized.

The energy of the electron can be written as Enl = (n + 1
2 )h̄ωc+El with quantum numbers

l, n and m, where El is the energy of the electron when it occupies the lth level. The Coulomb
potential is diagonal with this set of states.

Only when the system energy is less than the ground energy of D0 centre plus the lowest
energy of a free electron, i.e. the D− centre cannot be decomposed into a D0 centre and a free
electron, can a bound D− centre exist.

The binding energy of the D− centre is defined as

EB = ED0 + Ee − ED− (7)

in which ED0 is the ground state energy of the D0 centre in the quantum well with an applied
magnetic field; Ee is the ground state energy of the electron with the same magnetic field and
ED− is the system energy of the D− centre.

The Coulomb potential between two electrons is

v12(r) = 2√
( �ρ1 − �ρ2)2 + (z1 − z2)2

.

For matrix elements of the Coulomb potential

2〈l2n2m2|1〈l1n1m1|v12( �ρ, z)|l1n1m1〉1|l2n2m2〉2, (8)

the integral along the Z axis can be calculated. We define

vl1l2l′1l′2 ( �ρ1 − �ρ2) ≡ 2

(2π)2

∫ ∫
q dq dϕ ṽl1l2l′1l′2 (q)e

−i�q·( �ρ1−�ρ2)

= 〈l2|〈l1|v( �ρ1 − �ρ2, z1 − z2)|l ′1〉|l ′2〉. (9)

Then expression (8) can be written as

2

(2π)2

∫ ∫
q dq dϕ ṽl1l2l′1l′2(q) · 2〈n2m2|ei�q· �ρ2 |n′

2m ′
2〉2 1〈n1m1|ei�q· �ρ1 |n′

1m ′
1〉1. (10)
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Figure 1. Binding energy of the M = −1 state of D− in the 2D case; the solid line is our results;
the dashed line is the results of [9] and the dotted line is [24].

From references [20, 21], we have

〈nm|e−i�q· �ρ |n′m ′〉 = e−q2l2
c /2Gn′n(qlc)Gm′m(qlc)e

i(n′−n+m−m′)ϕ, (11)

where

Gs ′s(qlc) =
√

s<!
s>!

(
− iqlc√

2

)s>−s<

Ls>−s<
s< (q2l2

c/2). (12)

The definition of the notations s> and s< is consistent with the notations i> and i< given above.
The integral of ϕ can be calculated because the total angular momentum is conserved. We
obtain

〈v12〉 = 2

2π

∫
q dq ṽl1l2l′1l′2 (q)e

−q2l2
c Gn′

1n1(qlc)Gm′
1m1(qlc)Gn′

2n2(−qlc)

× Gm′
2m2(−qlc) · δn1−m1+n2−m2,n′

1−m′
1+n′

2−m′
2
. (13)

In an exactly two-dimensional system, ṽl1l2l′1l′2 (q) = 2π
q ; and in a quantum well ṽl1 l2l′1l′2 (q) =

2π
q · Fl1 l2l′1l′2 (q), in which Fl1l2l′1l′2 (q) [19] is the form factor, defined as

Fl1 l2l′1l′2 (q) =
∫ ∫

dz1 dz2 χl1(z1)χ
∗
l′1
(z1)χl2 (z2)χ

∗
l′2
(z2)e

−q|z1−z2|. (14)

An explicit form for Fl1 l2l′1l′2 (q) can be obtained in a quantum well. For an infinitely deep well,
making the lowest subband approximation, the form factor is [22]

F1111(q) = 2

qd
+ qd

q2d2 + 4π2
− 2(1 − e−qd )

(
1

qd
− qd

q2d2 + 4π2

)2

. (15)

Thus, the matrix element of the Coulomb potential of electron interactions can be obtained.
The calculation of the matrix element of the Coulomb potential between electron and donor
centre is simpler, and can be obtained analogously.

The system energies of the ground and the excited states of a two-dimensional D− centre
in an intense magnetic field were calculated, and the energies of the M = −1 state were
compared with the results of [9] and [24] (figure 1). We found our results agree well with [9]
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in high magnetic field limit, and have the same trend compared with [24]. So, it can be proved
that the method we used is a suitable one, especially in the high field limit.

In calculating, only the first sublevel is considered. In fact, the second and higher sublevels
in the well may affect the binding properties of D− centre’s states in a thick enough well. We
regret that we did not account for their effect. The reason that this shortcoming exists may be
that our first calculation is for the narrowest well, e.g. 5, 10 and 20 Å etc. We hope someone,
including ourselves, could consider this problem.

3. Results and discussion

In the case of GaAs–Ga1−x AsAlx , we use the following material data: the doped density of Al
is x = 0.33; the conduction bound offset is 224 meV, and the dielectric constant ε is 12.5. In
addition, the electron effective mass is 0.0665 m0 in the well and (0.0665 + 0.083x)m0 [23] in
the barrier, in which m0 is the mass of the free electron, and the strength of the magnetic field
can be denoted by the dimensionless quantity γ . Throughout the calculations, the difference
of the electron effective mass in the well and in the barriers is taken into account, while the
mismatch of the dielectric constant is ignored.

We have calculated the properties of the D− centres in different width wells and placed
into high magnetic field. We can conclude that there exist more bound states of the D− centre.
This situation is not different from the 2D case, in which only four bound states appear with a
high magnetic field limit.

3.1. Infinitely deep quantum well

There appear five bound states when the width of the QW is 10 Å. When the fifth state appears,
the value of the critical magnetic field γc in which the D− centre states would convert from
unbound to bound is 185.4. For the M = −3 state γc is 36.4, which is obviously lower than
that of 105.8 in [11] in 2D. When the width of the QW increases to 20 Å, seven bound states
have appeared and the values of their critical field are not larger than 90.2. In the same QW,
for the M = −3 state γc is 17.3, and for the M = −5 state 89. When the width of the well
is further increased, to 70 Å, there appear a total of eight bound states when γ<15, and for a
well size of 100 Åthere are seven excited states when γ < 7.5. The values of γc for the excited
states are obviously lower than that in the 70 Å well.

The M = 0 state is always bound in an infinitely deep well.
As the size of the well increases, the binding energy of the M = 0 state decreases.

This is because the shape of the M = 0 state’s wavefunction is uniformly and symmetrically
distributed in spherical form and is constrained to lie within the barriers of the QW; the narrower
the quantum well width is, the more obviously is the wavefunction squeezed by the barrier, so
the larger is the binding energy of the system. On the other hand, the binding energy increases
as the magnetic field increases because the wavefunction of the electron changes from the
free distribution with no magnetic field to a Landau level distribution which is limited by the
magnetic field in the QW plane.

As we can see from figures 2 and 3, as the width of the QW increases, the binding energies
of the M = −1,−2,−3, . . . states increase, while the critical magnetic fields of these states
decrease with increasing well width in figure 4. This is because the wavefunction of these states
is not spherically symmetric as in 3D but, instead, is oblate, for the reason that the constraints
due to the QW destroy the symmetry along the magnetic field direction. As the width of the
QW increases, the wavefunction’s distribution becomes more localized in the QW plane. As a
result, the system energy decreases, while the binding energy increases, and the γc gets smaller.
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Figure 2. Binding energy of M = −1 state of D− in an infinitely deep well with γ = 6 shown as a
function of width of well.
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Figure 3. Binding energy of M = −2 state of D− in an infinitely deep well with γ = 6 shown as a
function of width of well.

In our results, the γc of some states is very intense, especially for some states which are
situated at wider wells. For example, γc is 70.9 and 10.6 respectively for the M = −7 and −3
states in the 30 Å well. The critical magnetic field drawn from our calculation is so high that it
is usually impossible to realize in experiment, but it can be predicated that as the width of the
QW increases, the critical magnetic field will decrease, then the existence of the bound states
can be observed.
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Figure 4. The critical magnets of M = −2,−3,−4,−5 states of D− in an infinitely deep well are
shown as a function of the width of the well.
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Figure 5. Binding energies of M = −2,−3 states of D− in a finitely deep well d = 50 Å as a
function of magnetic field.

3.2. Finitely deep quantum well

The binding energies of all D− excited states are larger than those in the infinitely deep well.
For example, when the width of the QW is 10 Å, γc for the fifth bound state is less than 30
(cf 184.9 in an infinitely deep well). For thin wells of 20 and 30 Å, there appear four bound
states when γ is less than 7.5. Six bound states would appear when the width of the well
increases to 50 Å. In a cell of width 70 Å, the eighth bound state appearing at γc is about 6.13,
while in a cell of width 100 Å the critical field γc is 4.12 when the eighth bound state appears.

Again, the state with M = 0 is always bound in a finitely deep well, which is the same as
the situation in an infinitely deep well. Besides, the binding energy of M = 0 state in a finitely
deep well is lower than that in an infinitely deep well.

We can see from figure 5 that as the magnetic field increases the binding energies of
each state also increase. The binding energies of the M = −1,−2,−3, . . . states are
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Figure 6. The critical magnetic fields of M = −2,−3,−4,−5,−6,−7 states of D− in a finitely
deep well are shown as a function of the width of the well.

correspondingly higher than in the infinitely deep well, which is different from the M = 0 state
case. The conclusion that the values of these states’ critical magnetic fields are comparatively
low compared with the case in an infinitely deep well can be drawn from figure 6. All of these
results are owing to the reason that the wavefunctions of the D− centre in a finitely deep well
could penetrate into the barriers and the limitation to the wavefunctions in a finitely deep well
is not so strong as that in a infinitely deep well.

The binding energies of some states, e.g. M = −2 in a 50 Å finitely deep well, can be seen
from figure 5 to increase linearly with the increasing magnetic field. We comment for this case
that the magnetic field has become so intense that the electron–electron and electron–donor
Coulomb interactions can be ignored because of their small size compared with the magnetic
energy.

Although the γc of some excited states is very intense and its binding energy is
comparatively smaller (e.g. Eb = 0.195 meV at M = −4, d = 100 Å, γ = 7.52), γc is
expected to decrease as the well width increases, and this would suggest that the D− centre
can be more easily observed in wider wells when the thickness is large. From the above point
on, we concluded that from 2D to 3D it is impossible to have a certain width QW in which
there appear the wholly infinite bound states of a D− centre. This means that the number of
bound states is determined by both the intensity of the magnetic field and the width of the well
together.

Because our aim is to find out the criterion under which the bound state appears, we have
not taken into account the high magnetic field value obtained from theory.

All the excited states discussed above are spatially antisymmetric states, and only the
M = −1 symmetric state is calculated. There does not exist a bound state when γ is 90.2
in the infinitely deep well, nor in the finitely deep well with γ = 75.18. For practicality, no
further calculations were carried out for these states.

4. Conclusion

The appearance of a bound state is determined by both the well width and the intensity of the
magnetic field. If the intensity of the magnetic field is constant, the number of bound states will
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become greater and greater as the width of the well increases gradually. There are more bound
states for the D− centre in a QW than the number that appeared in the exactly two-dimensional
case [9, 10], which is not more than four. As the well width increases, the binding energy of
the M = 0 state decreases while those of the others increase, and the M = 0 state is always
bound.

In a finitely deep well, the binding energy of each excited state is larger and the critical
magnetic field is lower than those in an infinitely deep well. Although some low-excited states
(M = −1,−2, . . .− 7) all appeared in an infinitely deep well, the magnetic field expected to
be applied is too intense, and the binding energy is rather small. So, we suppose the method
to get the bound states observed is to increase the width of the well or apply a more intense
magnetic field or turn to both of them.

Our results indicate that the barriers have a squeezing effect on the wavefunctions of the
D− centre, and that the narrower the well is the more obvious the squeezing effect is. Hence,
the binding energy of the state will change with the well width. The squeezing degree of the
barriers on the wavefunction in a finitely deep well is lighter than that in an infinitely deep
well. The wavefunction in a finitely deep well can penetrate into the barriers, which leads to
the different binding properties of the D− centre between an infinitely deep well and a finitely
deep well.
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